
Optical music interpretation

Michael Droettboom, Ichiro Fujinaga, and Karl MacMillan

Digital Knowledge Center,
Milton S. Eisenhower Library,

Johns Hopkins University,
Baltimore, MD 21218

{mdboom,ich,karlmac}@peabody.jhu.edu

Abstract. A system to convert digitized sheet music into a symbolic
music representation is presented. A pragmatic approach is used that
conceptualizes this primarily two-dimensional structural recognition prob-
lem as a one-dimensional one. The transparency of the implementation
owes a great deal to its implementation in a dynamic, object-oriented
language. This system is a part of a locally developed end-to-end solu-
tion for the conversion of digitized sheet music into symbolic form.

1 Introduction

For online databases of music notation, captured images of scores are insufficient
to perform musically meaningful searches (Droettboom et al. 2001) and analyses
on the musical content itself (Huron 1999). Such operations require a logical
representation of the musical content of the score. To date, creating those logical
representations has been very expensive. Methods of input include manually
entering data in a machine-readable format (Huron and Selfridge-Field 1994) or
hiring musicians to play scores on MIDI keyboards (Selfridge-Field 1993). Optical
music recognition (OMR) technology promises to accelerate this conversion by
automatically producing the musical content directly from a digitized image of
the printed score.

2 The Lester S. Levy Collection of Sheet Music

The present system is being developed as part of a larger project to digitize the
Lester S. Levy Collection of Sheet Music1 (Milton S. Eisenhower Library, Johns
Hopkins University) (Choudhury et al. 2001). The Levy Collection consists of
over 29,000 pieces of popular American music. Phase One of the digitization
project involved optically scanning the music in the collection and cataloging
them with metadata such as author, title, and date. Currently, Phase Two of
the project involves using OMR to derive the musical information from the score
images. The OMR system being developed for this purpose must be flexible and
extensible enough to deal with the diversity of the collection.
1 http://levysheetmusic.mse.jhu.edu



3 Overview

For the purposes of this discussion, the problem of optical music recognition
is divided into two subproblems: a) the classification of the symbols on the
page, and b) the interpretation of the musical semantics of those symbols. The
first subproblem has been thoroughly explored and implemented by Fujinaga
(1996) in the Adaptive Optical Music Recognition (AOMR) system. The second
subproblem, Optical Music Interpretation (OMI), builds on this work and is the
subject of this paper, discussed in greater detail in Droettboom (2002).2

The AOMR system proceeds through a number of steps. First, the staff lines
are removed from the input image file to separate the individual symbols that
overlap them. Lyrics are also removed using various heuristics. Commonly occur-
ring symbols, such as stems and noteheads, are then identified and removed using
simple filtering techniques. The remaining musical symbols are segmented using
connected-component analysis. A set of features, such as width, height, area,
number of holes, and low-order central moments, is stored for each segmented
graphic object and used as the basis for the adaptive recognition system. The
recognition itself is exemplar-based and built around the k -nearest-neighbor (k -
NN) algorithm (Cover and Hart 1967). The accuracy of the k -NN database can
be improved offline by adjusting the weights of different feature dimensions using
a genetic algorithm (GA) (Holland 1975).

Recently, the AOMR part of the system has been extended into a more gen-
eral and powerful system currently under active development: Gamera (MacMil-
lan et al. 2002).

4 Background

In general, OMI involves identifying the relationships between symbols by exam-
ining their identities and relative positions, and is therefore a structural pattern
recognition problem. From this information, the semantics of the score (e.g. the
pitches and durations of notes) can be derived.

A number of approaches to OMI use two-dimensional graph grammars as the
central problem-solving mechanism (Fahmy and Blostein 1993; Couasnon and
Camillerapp 1994; Baumann 1995). Fahmy and Blostein use a novel approach,
called graph-rewriting, whereby complex syntactic patterns are replaced with
simpler ones until the desired level of detail is distilled. Graph grammar systems
may not be the best fit for the present problem, however, since notated music,
though two-dimensional on the page, is essentially a one-dimensional stream. It
is never the case that musical objects in the future will affect objects in the past.
This property can be exploited by sorting all the objects into a one-dimensional
list before performing any interpretation. Once sorted, all necessary operations
for interpretation can be performed on the objects quite conveniently. Any errors
in the ordering of symbols, often cited as a major difficulty in OMI, in fact tend
2 All of the software discussed here is open source and licensed under the GNU General

Public License, and runs on Microsoft Windows, Apple MacOS X, and Linux.



to be quite localized and simple to resolve. Therefore, graph grammars are not
used as part of the present implementation.

Another approach to OMI is present in the underlying data structure of
a music notation research application, Nutator (Diener 1989). Its T-TREES
(temporal trees) are object-oriented data structures used to group objects in
physical space and time. Each symbol in a score is composed of a type name,
an (x, y) coordinate and a z ordering. Collectively, this object is referred to as
a glyph. Glyphs exist in a “two-and-a-half dimensional space” and thus can be
stacked on top of each other. Glyphs in the foreground communicate with glyphs
in the background in order to determine their semantics. For instance, a note
would determine its pitch by communicating with the staff underneath it and
the clef on top of that staff. This paradigm of communication between glyphs is
used heavily throughout the present system. The advantage of this approach is
that glyphs can be edited throughout the process at run-time and the results of
those changes can be determined very easily.

5 Procedure

In general, the OMI system proceeds in a linear, procedural fashion, applying
heuristic rules, and is therefore not a learning system. However, some amount
of feedback-based improvement is provided by consistency-checking. In general,
due to the diversity and age of our collection, ad hoc rules for music notation
are used, which are not necessarily those laid out in music notation texts (e.g.
Gerou and Lusk 1996).

The OMI system moves through the following steps: input and clean-up, sort-
ing, reference assignment, metric correction, and output. Optionally, the system
itself can be tested using an interactive self-debugging system. Each phase of
execution is discussed below.

5.1 Input and clean-up

The output from AOMR used by OMI is an eXtensible Markup Language (XML)
description of the glyphs identified on the page. Each <glyph> entry contains a
classification, a bounding box, and a list of features. Object instances are created
from the input based on a class name, therefore new classes of glyphs can be
easily added to the system.

Glyphs that were separated by poor printing or improper binary thresholding
are then joined together using heuristic rules.

5.2 Sorting

Since the glyphs are output from AOMR in an arbitrary order, the sorting phase
must put them into a useful order for interpretation: that in which they would
be read by a musician. This ordering makes many of the algorithms both easier
to write and maintain as well as more efficient.



Contextual information, such as clefs and time signatures, must carry over
from one page to the next. The easiest way to deal with this problem is to treat
multi-page scores as one very long page. Each page is input in sequence and the
bounding boxes are adjusted so that each page is placed physically below the
previous one. In this way, multi-page scores are not a special case: they can be
interpreted exactly as if they were printed on a single page. (Overflow)

In common music notation, events are read from left to right on each staff.
Therefore, before the glyphs can be put into this order, they must first belong
to a staff. Each glyph will have a reference to exactly one staff. Staff assignment
is determined by starting with glyphs that physically overlap a staff and then
moving outward to include other related glyphs. Once glyphs have been assigned
to staves, those staves need to be grouped into systems (a set of staves performed
simultaneously), and then each staff in each system is assigned to a part (a set
of notes played by a single performer, or set of performers).

Lastly, in the sorting phase, glyphs are put into musical order. Glyphs are
sorted first by part, then voice (see Section 5.3), and then staff. Next, the glyphs
are sorted in temporal order from left to right. Finally, glyphs that occur at the
same vertical position are sorted top to bottom. This sorted order has a number
of useful properties. Most inter-related glyphs, such as noteheads and stems, ap-
pear very close together in the list. Finding relationships between these objects
requires only a very localized search. staff glyphs serve to mark system breaks
and part glyphs mark the end of the entire piece for each part. Lastly, this or-
dering is identical to that used in many musical description languages, including
GUIDO (Hoos and Hamel 1997), Mudela (Nienhuys and Nieuwenhuizen 1998)
and MIDI (MIDI 1986), and therefore output files can be created with a simple
linear traversal of the list.

5.3 Reference assignment

The purpose of this phase is to build the contextual relationships between glyphs
to fully obtain their musical meaning. For instance, to fully specify the musical
meaning of a notehead, it must be related to a staff, stem, beam, clef, key
signature, and accidentals (Figure 1). This is the core of OMI.

Fig. 1. References to other glyphs (shaded in grey) are required to fully determine the
meaning of a notehead (marked by ×).

Reference assignment proceeds through a number of categories of symbols:
pitch, duration, voice, chord, articulation, and text. Most of these processes are



performed using a single linear scan through the sorted glyphs, much like a
Turing machine.

Class hierarchy All glyph classes are members of an object-oriented class
hierarchy based on functionality. In this style, most abstract subclasses can be
named by adjectives describing their capabilities. For instance, all symbols that
can have their duration augmented by dots are subclasses of DOTTABLE. This
allows new classes of glyphs to be added to the system simply by combining
the functionalities of existing classes. It also means that reference-assignment
algorithms using these classes can be as abstract as possible. This general design
would be much more difficult to implement in more static languages, such as
C++, where type modification at run-time is not possible. All of the reference
assignment operations described below make extensive use of this class hierarchy.

Pitch OMI has a three-tiered hierarchy of pitch: staff line (which requires a ref-
erence to a staff), white pitch (which requires a reference to a clef) and absolute
pitch (which requires references to key signatures and accidentals). Each level
adds more detail and requires more information (i.e. references to more classes
of glyphs) in order to be fully specified. These three different levels are used so
that the functionality can be shared between glyphs that use all three, such as
notes, and those that only use a subset, such as accidentals.

Determining the correct staff line location of notes on the staff is relatively
easy, since most scores have relatively parallel staff lines, pitch can be determined
by a simple distance calculation from the center of the staff. However, one of the
most difficult problems in determining pitch is dealing with notes outside the
staff. Such notes, which require the use of short “ledger” lines, are often placed
very inaccurately in hand-engraved scores (Figure 2). The most reliable method
to determine the pitches of these notes is to count the number of ledger lines
between the notehead and the staff, as well as determining whether a ledger line
runs through the middle of the notehead.

Fig. 2. An example of poorly aligned ledger lines. The grey lines are perfectly horizontal
and were added for emphasis.



Duration Durations are manipulated throughout the system as rational (frac-
tional) numbers. Operations upon Rational objects preserve the full precision
(e.g. triplet eighth notes are represented as exactly 1

3 ).
Assigning stems to noteheads, the single most important step in determining

the duration of a note, is a difficult problem since stems are visually identical to
barlines, although they serve a very different purpose. Height alone is not enough
information to distinguish between the two, since many stems may be taller than
the staff height, particularly if they are part of a chord. Instead, vertical lines
are dealt with by a process of elimination.

1. Any vertical lines that touch noteheads are assumed to be stems.
2. Any remaining vertical lines taller than the height of a staff are assumed to

be barlines.
3. The remaining vertical lines are likely to be vertical parts of other symbols

that have become broken, such as sharps or naturals.

If the guesses made about stem/barline identity turn out to be wrong, they can
often be corrected later in the metric correction stage (Section 5.4).

The direction of the stem is determined based on the horizontal location of
the stem. If the stem is on the right-hand side, the stem direction is assumed to be
up. If the stem is on the left-hand side, the stem direction is down. Stem direction
can not be determined based on the vertical position of the stem because the
notehead may be part of a chord, in which case the notehead intersects the stem
somewhere in the middle. This method must be superseded by a more complex
approach for chords containing second (stepwise) intervals, since some of the
noteheads are forced to the other side of the stem.

Voices Multi-voicing, where multiple parts are written on the same staff, often
occurs in choral music or compressed orchestral scores to conserve space. Just
as in multi-page scores, the approach here is to massage the data into a form
where it no longer is a special case. Therefore, each voice is split into a separate
logical part (Figure 3). Note that some glyphs exist in all logical parts (such as
clefs and time signatures) whereas others are split (notes). Determining whether
to split a measure into multiple parts is determined automatically.

5.4 Metric correction

Physical deterioration of the input score can cause errors at the recognition
(AOMR) stage. Missing or erroneous glyphs cause voices to have the wrong num-
ber of beats per measure. These errors are quite serious, since they accumulate
over time, and parts become increasingly out of synchronization. Fortunately,
many of these errors can be corrected by exploiting a common feature of type-
set music: notes that occur at the same time are aligned vertically within each
system (set of staves) of music. Unfortunately, some poorly typeset scores do
not exhibit this feature. In that case, metric correction fails consistently, and is
automatically bypassed.



Fig. 3. Splitting multi-voiced scores.

The score is examined, one measure at a time, across all parts simultaneously.
A number of approaches are then applied to that measure to correct the durations
of notes and rests and barline placement. The primary goal is to ensure that the
length of the measure across all parts is the same before moving to the next
measure, and to make any corrections in the most intelligent way possible.

At present, there are seven approaches to metric correction that are at-
tempted. For each, a particular change is made, and then the consistency check
is performed again. If the change does not improve the measure, the change is
undone and the next approach is tried. a) Measures containing only a single rest
are adjusted to the length of the entire measure. b) Whole rests and half rests,
which are visually identical, are traded and checked for consistency. c) Specks
of ink or dust on the page can be confused for augmentation dots. Therefore,
augmentation dots are ignored. d) Stems that are too far from a notehead may
be interpreted as a barline. These barlines are reexamined as if they were stems.
e) Barlines can be missed entirely, and new ones are inserted based on the lo-
cations of barlines in other parts. f) Flags and beams can be misread. In this
case, the duration of notes is estimated by examining their horizontal position
in relation to notes in other parts (Figure 4). g) As a worst case scenario, empty
durational space is added to the end of the measure so that all parts have the
same duration. This does not usually produce an elegant solution, but it still
prevents the errors of one measure to accumulate across an entire piece.

Metric correction works best in scores with many parts, because there is
a large amount of information on which to base the corrections. It is also in
multi-part scores where metric correction is most crucial. However, many of the
algorithms can improve the accuracy of single-part scores as well.



Fig. 4. Adjusting the durations of notes based on the durations in other parts.

5.5 Output

Unfortunately, there is no single accepted standard for symbolic musical repre-
sentation (Selfridge-Field 1997). It is therefore necessary for the present system
to support different output formats for different needs. Relying on external con-
verters, as many word processors do, is not ideal, since many musical representa-
tion formats have radically different ordinal structures and scope. For example,
GUIDO files are organized part by part, whereas Type 0 MIDI files interleave
the parts together by absolute time (a temporal stream). To handle this, OMI
uses pluggable back-ends that map from OMI’s internal data structure, a list of
glyphs, to a given output file format. Presently, output to GUIDO and MIDI
is implemented, but other musical representation languages such as Lilypond
Mudela are planned.

5.6 Interactive self-debugger

The ability to interact with the data of a running program, using a scripting
language such as Python, greatly reduces the length of the develop-test cycle.
However, manipulating graphical data, such as that in OMI, is quite cumbersome
using console-based tools. For example, selecting two-dimensional coordinates
with a mouse is much easier than entering them numerically. For this reason,
a graphical, interactive debugger was implemented that allows the programmer
to examine the data structures of a running OMI session and execute arbitrary
Python code upon it. The interactive self-debugger proved to be an invaluable
tool when developing the OMI application. While extra development effort was
expended to create it, those hours were easily made up by the ease with which
it allows the programmer to examine the state of the data structures.

6 Conclusion

The system presented here represents a number of pragmatic solutions to the
problem, providing a useful tool that is effective on a broad range of scores. In
the near future, it will allow for the creation large online databases of symbolic
musical data: a valuable resource for both musicologists and music-lovers alike.



Acknowledgements

The second phase of the Levy Project is funded through the NSF’s DLI-2 initia-
tive (Award #9817430), an IMLS National Leadership Grant, and support from
the Levy Family.

References

Baumann, S.: A simplified attributed graph grammar for high-level music recognition.
International Conference on Document Analysis and Recognition. (1995) 1080–1083

Choudhury, G. S., DiLauro, T., Droettboom, M., Fujinaga, I., MacMillan, K.: Strike
up the score: Deriving searchable and playable digital formats from sheet music.
D-Lib Magazine. 7(2) (2001)

Couasnon, B., and Camillerapp, J.: Using grammars to segment and recognize music
scores. International Association for Pattern Recognition Workshop on Document
Analysis Systems. (1994) 15–27

Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory. 13(1) (1967) 21–27

Diener, G.: TTREES: A tool for the compositional environment. Computer Music
Journal. 13(2) (1989) 77–85

Droettboom, M., Patton, M., Warner, J. W., Fujinaga, I., MacMillan, K., DiLauro,
T., Choudhury, G. S.: Expressive and efficient retrieval of symbolic musical data.
International Symposium on Music Information Retrieval. (2001) 163–172

Droettboom, M.: Selected Research in Computer Music. Master’s thesis. (2002) The
Peabody Institute of the Johns Hopkins University.

Fahmy, H., D. Blostein.: A graph grammar programming style for recognition of music
notation. Machine Vision and Applications. 6(2) (1993) 83–99

Fujinaga, I.: Adaptive Optical Music Recognition. (1996) Ph. D. thesis, McGill Uni-
versity.

Gerou, T., L. Lusk.: Essential Dictionary of Music Notation. (1996) Alfred, Los Angeles.
Holland, J. H.: Adaptation in Natural and Artificial Systems. (1975) University of

Michigan Press, Ann Arbor.
Hoos, H. H., Hamel, K.: GUIDO Music Notation Version 1.0: Specification Part I, Basic

GUIDO. (1997) Technical Report TI 20/97, Technische Universität Darmstadt.
Huron, D.: Music Research Using Humdrum: A User’s Guide. (1999) Center for Com-

puter Assisted Research in the Humanities, Menlo Park, CA.
Huron, D., Selfridge-Field, E.: Research notes (the J. S. Bach Brandenburg Concertos).

(1994) Computer software.
MacMillan, K., Droettboom, M., Fujinaga, I.: Gamera: A Python-based toolkit for

structured document recognition. Tenth International Python Conference. (2002)
(In press)

MIDI Manufacturers Association Inc.: The Complete MIDI 1.0 specification. (1986)
Musitek.: MIDISCAN. Computer Program (Microsoft Windows).
Neuratron. Photoscore. Computer Program (Microsoft Windows, Apple MacOS).
Nienhuys, H., Nieuwenhuizen. J.: LilyPond User Documentation (Containing Mudela

Language Description). (1998)
Van Rossum, G., Drake, F. L.: Python Tutorial. (2000) iUniverse, Campbell, CA.
Selfridge-Field, E.: The MuseData universe: A system of musical information. Com-

puting in Musicology 9 (1993) 11–30
Selfridge-Field, E. Beyond MIDI: The Handbook of Musical Codes. (1997) MIT Press,

Cambridge, MA.


