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1. Introduction: why another data format?

The FITS format (Flexible Image Transport System; (Wells and
Greisen, 1979; Greisen et al., 1980; Wells et al., 1981; Greisen and
Harten, 1981; Hanisch et al., 2001); and more recently, the defini-
tion of the version 3.0 FITS standard by Pence et al., 2010) has been
a mainstay of astronomy for over three decades, and is the envy of
other scientific fields that lack a standard format. Nevertheless, the
shortcomings of the standard astronomical data format are becom-
ing more of a burden on those that must create and process data
from new telescopes. These shortcomings are discussed in great
length in a paper (Thomas et al., 2015) and will not be rehashed
here. The community appears to be split on whether this means
that incremental improvements to FITS are needed, or a completely
different format is appropriate, but the trend of opinion toward
needing an alternate format appears to be growing.'

While it is possible to write software to be independent of FITS
limitations, as we are now doing for JWST calibration pipelines, it
requires careful design and is definitely more difficult to achieve
than if dealing with data files that had better organizational
capabilities and metadata in the first place.

In our view, the problems with FITS arise from many factors
and in our opinion, fixing a few of these is not likely to provide
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1 This is largely based on informal polls at the FITS Birds-of-a-Feather sessions
at the Astronomy Data Analysis Software and Systems conferences where over the
past few years there has been a marked shift of those attending toward favoring a
complete replacement of FITS, now being a significant majority at the last such poll.
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a good solution. (These factors are detailed at length in Thomas
etal., 2015; these include the severe restrictions on keyword name
length, the lack of any simple grouping structure for metadata or
data, among others.)

A couple of examples illustrate the kinds of problems that arise.
For HST, it was desired to bundle the image data with correspond-
ing data quality and error arrays. This was accomplished by us-
ing the EXTNAME keyword to identify which type of extension was
present. It was also desired to include data from both detectors in
the same file. That was done by using the EXTVER keyword to num-
ber these groups to distinguish them. Then at a later time, it was
desired to group multiple such observations in a file. At that point,
difficult choices had to be made since there were no more standard
keywords to indicate another level of grouping. One could have
revised the conventions for EXTNAME or EXTVER, but that would
require changing all the existing software to use the new conven-
tion. Alternatively, it could have used new non-standard keywords
to indicate grouping, but that would require writing new software
to achieve the needed behavior, while being completely unclear
how these keywords were to be interpreted without resorting to
looking at local documentation. In the end, the grouping was aban-
doned as being too problematic.

A second example regards the limitations on header keywords.
The FITS WCS conventions restrict the order of polynomials that
can be used because there are too few available characters in key-
word names to permit more than one digit to describe the or-
der. Higher orders may be rarely needed, but they are expressly
excluded because of a keyword size limitation. For complex dis-
tortion models, the keyword limitations forced the proposer of
the standard to devise yet another workaround to keyword name
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limits (neither the proposed standard nor the keyword workaround
has been accepted, and the solution to handling more complex
distortions continues to languish; Calabretta et al., 2004). It ap-
pears that the existing WCS standard has been limited in what it
is permitted to do. For example, it does not permit arbitrary con-
catenation of transformation models due to namespace collision
issues. For example, how is it possible to reuse an existing dis-
tortion model (i.e., with a different set of parameters) within the
same header without requiring yet more characters in the keyword
name to distinguish it from other instances of the same kind of
distortion model when model keyword names have already been
designed to take all the available characters? This is just one in-
stance where a simple limitation has profound and long-reaching
constraints on what is easily achieved.

Many of the existing conventions in FITS to overcome previous
limitations have actually resulted in a more complex format
and even more complexity in software to work around the
original limitations. These include the CONTINUE, HIERARCH, and
INHERIT conventions. The complexity is mostly borne by the
FITS support libraries, and these become complex partly due to
uncertain interactions between the conventions (generally the
conventions do not refer to or specify how other conventions
work in concert with itself). The other aspect of complexity is
uncertainty as to who will be able to use these conventions as many
libraries do not support any particular convention.

It is likely that further enhancements will be more of the same,
and make maintenance of FITS libraries even more complex and
expensive, while leading to headers that are even more difficult
to interpret without complex libraries. We speak from experience
in supporting PyFITS (now astropy.io.fits; Barrett and Bridgman,
1999; Astropy Collaboration, 2013). Starting with a clean slate
avoids many of these complexities and will lead to a much cleaner
design for the resulting format.

2. The alternatives

Presuming one accepts that a replacement format is warranted,
two alternatives present themselves:

1. Use an existing alternative format. There are a few worth
considering. We will briefly review the landscape and comment
on them. In short, we find significant problems with all of them.
If one were to choose the best of them, it would likely be HDF5.

2. Develop an entirely new format. The drawback is that it is
extremely difficult to convince a community to settle on a new
standard when there is a widely used, existing standard. The
advantages of a new format must be very compelling, have a
low barrier to adoption, and have few perceived regressions in
functionality from the existing format.

2.1. Survey of existing formats with possible use for astronomy

We will not address previous attempts at alternate formats that
failed to supplant FITS, but only those that are currently widely
used.”

2.1.1. VOTable

This format was designed specifically for astronomy (Ochsen-
beinetal., 2013). To its benefit, it is built on a standard markup lan-
guage (XML; Bray et al., 2008) and thus is able to leverage existing

2 However, see Jenness et al. (in press) for lessons learned in developing such an
alternate.

software libraries to read and validate XML files. It removes many
of the problems FITS has. Nevertheless, it has a fatal drawback,
namely that there is no intrinsic support for efficiently handling bi-
nary data. This renders it useless for large data sets for which binary
data is a necessity to avoid the costs of disk space, and the over-
head of conversion from text to binary formats (and vice versa). For
large data sets, the lack of binary support makes memory mapping
unavailable when data sizes are too large for processor memory.
VOTables may refer to binary formats (FITS in particular). Even so,
it does not entirely solve the problem that FITS files present if it
requires FITS files to store large data sets and leads to managing
multiple files that must be treated as an integral whole.

It must also be noted that this format does not allow for
additional structured metadata beyond just the description of the
tabular data. There are places to put free-text descriptions of
things, but it would be impossible, for example, to include world
coordinate system (WCS) information in a VOTable file without
the VOTable schemas being updated to allow arbitrary additional
content.

2.1.2. Hierarchical Data Format 5 (HDF5)

This is a very flexible format capable of handling many storage
options and needs (Folk et al., 2011). It is used by a much broader
community than astronomy and is the strongest alternative
candidate to FITS of existing data formats. It is already being used
by some astronomical projects (e.g., LOFAR, Anderson et al., 2011
and Alexov et al., 2012, HDS, Jenness, in press). We summarize the
drawbacks of HDF5 below, partly by indicating aspects of FITS that
were good and still worth preserving, though in a different form.

1. It is an entirely binary format. FITS headers are easily human-
readable. Nothing like that is the case for HDF5 files. All
inspection of HDFS5 files must be done through HDF5 software.
With FITS, it is quite possible to inspect the header with very
primitive tools. The consequence of this for HDF5 is that the
HDF5 toolset must be installed, and its software must be used if
one wants to inspect the contents of the HDF5 file in any way.

2. The FITS format is, to a large degree, self documenting. If
one removed all of the standards documentation, one could
reasonably infer the organization of the contents without
a great deal of trouble (though the 2880 blocking, and
compression options would both present some challenges,
particularly the latter). The same cannot be said for HDF5. One is
essentially lost without the HDF5 specification documentation,
which is lengthy and complex (approximately 125 pages).

3. Because of the complexity, there is effectively only one imple-
mentation. The drawback of having only one implementation
is that it may deviate from the published specification (who
would know since there is no independent verification?). It is
true that there is a reference set of test data; nevertheless, this
does not guard against practical deviations from the specifica-
tion. Admittedly, multiple implementations do not remove the
possibility completely, but they do significantly reduce the like-
lihood.

4. A related issue is that for some time the HDF format was not
considered archival as it kept changing, and for a time it was
considered more of a software API than a specific representation
on disk. HDF5 has been relatively stable, though given the
lack of multiple implementations and self documenting nature
makes it less appropriate as an archival format. Will the
future library be able to read much older files? FITS has been
considered a much stronger archival format for this reason.

5. HDF5 does not lend itself to supporting simpler, smaller text-
based data files. As an example, many astronomers prefer to
use simple ASCII tables for data that do not require very large
files, primarily for the convenience in viewing and editing them
without using special tools.

http://dx.doi.org/10.1016/j.ascom.2015.06.004
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6. The HDF5 Abstract Data Model is not flexible enough to repre-
sent the structures we need to represent, notably for general-
ized WCS (see Section 6.6). The set of data types in HDF5 does
not include a variable-length mapping datatype (analogous to a
Python dictionary or JavaScript object). While “Groups”, which
are much like a filesystem directory, could be used for this pur-
pose, “Groups” cannot be nested inside of variable-length ar-
rays but only within each other. The “Compound” data type,
analogous to a C struct also seems fruitful, but it cannot con-
tain other “Compound” types or variable-length arrays. These
arbitrary restrictions on nesting of data structures make some
concepts much harder to represent than they otherwise need to
be.

2.2. Other formats used for astronomy or space science

CDF The Common Data Format (Goucher et al., 1994) is
purely binary and does not support grouping, hierarchical
structures, nor references.

netCDF This format originated from CDF (Brown et al., 1993).
It also is purely binary and does not support references
nor compression. Version 3 does not support hierarchical
grouping as well. Version 4 is essentially layered on HDF5,
so most of the above comments regarding HDF5 apply,
except that netCDF-4 has fewer features but a simpler
APIL

Starlink HDS/NDF The Hierarchical Data System (Warren-Smith
et al., 2008) does handle grouping and hierarchical
structures, but does not support 64-bit dimension sizes,
table structures organized by row, nor compression. It is
a pure binary format. The N-Dimensional Data Format
(NDF) is layered on HDS and provides higher level
structures as well as semantic information. Nevertheless,
it has the same limitations as HDS. Support for these
formats was ended in 2005 though there is a recent
proposal to layer HDS on HDF5 (Jenness et al., in press).

XDF The eXtensible Data Format (Shaya, 0000), like VOTable,
uses XML, and likewise suffers from the inability to store
raw binary data. Development of this format was halted
in 2006.

FITSML FITSML (Thomas et al., 2000) essentially embeds the FITS
file format in an XML representation. As such it also
suffers the problem of not handling raw binary, and the
restrictions present in the FITS format regarding grouping
and metadata.

We seek a format that does not have these limitations.
3. Summary of ideal qualities in a new format

The main focus of the new format is on data interchange
and archive suitability while retaining at least the same level of
efficiency as FITS.

One must keep in mind that not all desired features and qual-
ities are practical: some come at the expense of others. Increased
performance (speed, compression, etc.) often come at the price of
complexity. For example, distributed data sets require explicit sup-
port. We expect that tools to convert to other formats such as HDF5
and others designed for high throughput computing will address
these needs, at least initially. Nevertheless, we can prioritize what
we believe are the most important qualities.

1. Structure: Qualities of the abstract structure that can be
represented in the file:

(a) Intrinsic hierarchical structure: Specifically, the syntax
makes structure apparent. It is not necessary to explicitly
indicate the hierarchical relationships between objects
using special naming conventions. Grouping and binding
of names to objects is handled by support for typical data
types, such as mappings and sequences. More details and
examples will be provided in Section 4.

(b) Human-readable: The importance of this cannot be
overstated: it is considered one of the key reasons for
the success of the World Wide Web. In Architecture of the
World Wide Web (Jacobs and Walsh, 2004), a document of
recommendations for future W3C standards, the authors
state:

Textual formats also have the considerable advantage
that they can be directly read by human beings
(and understood, given sufficient documentation). This
can simplify the tasks of creating and maintaining
software, and allow the direct intervention of humans
in the processing chain without recourse to tools more
complex than the ubiquitous text editor. Finally, it
simplifies the necessary human task of learning about
new data formats; this is called the “view source” effect.

(c) Based on an existing standard: Structured data formats
can be surprisingly hard to specify and implement correctly.
By reusing an existing standard, we can leverage existing
work by the larger technical community.

(d) Support for references: Specifically, provides a syntax for
referring to the same object from multiple locations in the
file. This allows for describing complex relationships be-
tween objects and avoiding repeating information unnec-
essarily.

(e) No arbitrary limits where possible: Specifically, attribute
(aka keyword) names should be much larger than 8
characters, and attribute values not limited to 80 character
cards.

(f) Efficient updating: It should be possible to expand and
contract elements in the file, within reasonable limits,
without necessitating a rewrite of the entire file.

. Data: Qualities of the numerical data in the file:

(a) Support both textual and binary data: Both binary and
text-based data have their place, so our file format should
support both. The binary data should be stored “raw”,
unlike, for example, the binhex encoding used by VOTable.
This allows the data to be randomly accessed, and supports
memory mapping of data that is too large to fit into
system RAM. Text-based data should be human-editable
and require a minimum of syntax.

(b) Machine independent: Support for both kinds of endian-
ness for numeric quantities in binary data.

(c) Structured, not flat: Binary data logically exists inside of a
structured hierarchy, not in a flat list as in FITS.

(d) Multiple binary data sections may be present.

(e) Supports n-dimensional arrays (see Section 6.2) and tables.

(f) Intrinsic support for writing streams: Specifically, does
not require going backwards in the stream to set parameters
when the stream is complete (as FITS requires for headers).
Support for reading streams is also supported, but not a
particular advantage over FITS.

. Interoperability: Qualities that affect the interoperability of

the file format:

(a) Explicit versioning: Versioning of both of the format as
a whole and the individual structures within it should be
supported. We do not expect that the format will meet
the needs of all existing and future users at the outset,
but rather the format will evolve over time. An explicit

Please cite this article in press as: Greenfield, P. etal, ASDF:
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versioning scheme allows libraries to know which version
of particular semantics is present and react accordingly,
rather than relying on heuristic-based guessing.

(b) Explicit extensibility: Domain-specific conventions may be
included without interfering with each other.

(c) Support validation: Support a schema language that
defines and allows for semantic validation of the type and
structure of objects. Along with this, immediately available
tools to validate the correctness of files claiming to adhere
to the format, particularly with useful error messages
indicating the problem. The approach to schema validation
in the core format should also be available for adding
domain-specific extensions.

The last group of qualities is very important, though enforcing
their use is as much a sociological problem in astronomy as it
is a technical one. FITS, as it was not designed with explicit
versioning, extensibility and validation in mind, has had a hard
time dealing with the inevitable incompatible variances that have
developed as a result. However, even in the case of VOTable,
where such features did exist, surprisingly many VOTable files
were issued that did not meet the specifications. This seems to
indicate that technical solutions to these problems alone are not
enough. To address this, we plan to borrow some ideas from
software engineering, such as “Plug Fests” (meetings of developers
to test and fix problems with interoperability) and continuous
integration testing (to automatically report on the compliance of
files produced by various software). By making the results of such
testing publicly available, it should be clear when corrections need
to be made. Early action has the promise of saving much work
in the future on everyone’s part and avoiding the acceptance of
established variances as equivalent to squatter’s rights.

4. Outline of YAML

We have used Yet Another Markup language (YAML) (Ben-Kiki
et al., 2005) for the text-based structure definition in ASDF.

Supported YAML data types include scalars (strings, numbers,
Booleans and “null”) and arbitrary nesting of mappings and
sequences. These data types can essentially represent any structure
desired, and correspondingly, any object in a program can be
translated to a representation in YAML. In other words, any
complex object can be saved as YAML and restored from YAML
given suitable software to support such. Unlike FITS, there is no
limit to the size of YAML strings, and no intrinsic limit to the size
of a value.?

Though YAML is not as widely used as JSON (Bray, 2014) its
advantages are basically:

e Ability to represent structure more concisely and in a way more
easily read by human eyes.
e Explicit type designations (i.e., YAML tags).

Whereas JSON requires special delimiters (e.g.,“[ 1 { }")to
indicate the structure being used, YAML also permits indentation
and layout to indicate structure. This can lead to more compact and
readable text with a bare minimum of special characters. Figs. 1
and 2 illustrate some of the alternative formatting representations
possible in YAML.

There is no question that by appropriate conventions, the same
constructs could be implemented in JSON (or even FITS). The issue
is whether such conventions are less transparent (they are not part
of the original syntax), and also less concise (they require devoting

3 FITS does have a convention, which is not part of the standard, that enables long
strings, though with restricted character sets.

target: Jupiter

ra: 9h12mi5s

dec: -10d400'36\"
coordinate-frame: ICRS
observer: Galileo Galilei

telescope: 1\" homemade
instrument: right eye
data:
- date: 1610-01-07

moons: 3
- date: 1610-01-10

moons: 3
- date: 1610-01-13

moons: 2

comments: >
Hope this wins the Nobel Prize
ApJ paper submitted
Need church approval;
shouldn't be a problem.

Fig. 1. Indentation-oriented example.

target: "Jupiter"

ra: "Sh12mibs"

dec: '-10400\'36""'
coordinate-frame: "ICRS"
observer: "Galileo Galilei"

telescope: '1" homemade'
instrument: "right eye"
data: [
{"date" "1610-01-07",
"moons": 3},
{"date" "1610-01-10",
"moons": 3},
{"date" "1610-01-13",
moons: 2}
]

comments: >
Hope this wins the Nobel Prize
ApJ paper submitted
Need church approval;
shouldn't be a problem.

Fig. 2. Delimiter-oriented example.

Header (#ASDF 0.1.0)
Tree (YAML content)
Block 0

Block n

Fig. 3. Schematic of top-level file layout.

special attributes to dealing with the specific features, whereas in
YAML these items stand out more clearly for what they are).

XML was not considered due to its comparative unreadability.
To elaborate on this claim, the markup tags dominate the text and
generally make it hard to see content embedded in the markup.
That a format such as JSON has greatly supplanted XML indicates
that the complexity and unreadability of XML are major factors in
its declining use as well as an indication that its extra capabilities
are of relatively little use for data interchange even while being
useful for text markup.

All major programming languages have mature YAML libraries
available including C, C++, Java, JavaScript, and Python (see

http://dx.doi.org/10.1016/j.ascom.2015.06.004
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#ASDF 0.1.0 Header
%YAML 1.1 YAML version declaration Tree
%TAG ! tag:stsci.edu:asdf/0.1.0/ TAG directive defining a tag prefix
--- lcore/asdf YAML document start marker (---)
with tag for root element (! core/asdf).
data: !core/mndarray An n-dimensional array
source: 0 Data is stored in first block below
datatype: int64 64-bit signed integer type
byteorder: little Little-endian byte order
shape: [1024, 2048] Size of array, row-major
YAML document end marker
d3424c4b Block marker Block #0
0030 Block header size
00000000 Flags
00000000 Compression
0000000001000000 Allocated size
0000000001000000 Used size
0000000001000000 Data size
2c7ab85a893283e9 Checksum
8c931e9511add182
0000000000000001 Data

Fig. 4. Example of simple ASDF file. The block content is shown here in hexadecimal notation for clarity, though it is raw binary data in the file.

#ASDF 0.1.0
%YAML 1.1
%TAG ! tag:stsci.edu:asdf/0.1.0/
--- lcore/asdf
fits: !fits/fits
- header:
- [SIMPLE, true, Fits standard]
- [BITPIX, -64, Bits per pixell]
- [NAXIS, 2, Number of axes]
- [NAXIS1, 1024]
- [NAXIS2, 1024]
- [EXTEND, true, File may contain extensions]
- [NEXTEND, 6, Number of standard extensions]
- [DATE, '2007-02-08T21:38:46',
'date this file was written (yyyy-mm-dd)']
- [FILENAME, j94f05bgq_flt.fits, name of file]
- [FILETYPE, SCI,
'type of data found in data file']

.. rest of FITS header removed for brevity ...

data: !core/mndarray
source: O
datatype: float64
byteorder: big
shape: [1024, 1024]

Fig. 5. An example FITS file stored in ASDF.

http://[yamlorg for a full list though, alas, INTERCAL is not
included). ASDF uses YAML 1.1, which, as of the time of this writing,
is not the latest version, but has the widest library support.

A significant feature in YAML, not present in JSON, is that it
allows the use of “tags” to specify that the following value should
be interpreted as a special type or object. Anything preceded by
an exclamation point (!) is generally a tag. These are used in ASDF
to enforce the schema rules associated with the tag. (See Figs. 4,
6, and 7 for examples of tag usage.) When the validating parser
sees such a tag, it knows to validate the contents referred to by
that tag against the defined schema for that tag. For example, if
atag 'wcs/steps appears (such as in Fig. 6), the validation will
be performed against the corresponding schema definition for that
tag (schemas are discussed in more detail in Section 7).

YAML also supports referring to other elements through what
it calls “anchors” and “aliases”. Anchors associate a label with a
YAML object, and aliases use the label to indicate they are referring
to that object. Since JSON has a convention, called “JSON Pointer”
(Bryan et al., 2013) to make such references, which also supports
referring to elements in other files, ASDF generally uses the JSON
convention, though anchors and aliases are supported.

YAML does have some defects. It does permit comments (JSON
does not), however, the comments have no semantic meaning.
Most parsers discard them. Because of that, we discourage their
use and will provide alternate means of supplying such annotative
information.

By default, the ordering of the map (dictionary) type is not
preserved, which can make entries change order when round-
tripping files. Overriding the default to preserve the order is fairly
easy to do in most YAML libraries, however.

Note that in the more free form syntax, special characters can
present some annoyances as illustrated by the value for declination
since “"” must be “escaped”. Even for delimited text, this case
is not completely free from this issue since it uses both forms of
string delimiters thus requiring one form to be escaped. This can be
avoided by use of corresponding Unicode characters to represent
these symbols (The Unicode Consortium, 2000). This introduces a
new set of issues, of course, since dealing with Unicode is still not
universally supported. At the same time, Unicode allows for some
things currently impossible in FITS, such as storing investigator
names with non-Latin characters.

5. Basic structure of ASDF files

ASDF files consist of three sections, in the following order (see
Fig. 3):

1. A one line header indicating it is an ASDF file (with the version
of the ASDF standard explicitly stated).

2. AYAML segment called the “Tree”.

3. Zero or more binary blocks make up the remainder of the file.

An ASDF file without any binary data is, strictly speaking, also a
YAML file.

The Tree provides a single structured view of all the data in
the file. It is made up of the basic JSON object model datatypes

Please cite this article in press as: Greenfield, P. etal, ASDF:
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%TAG ! tag:stsci.edu:asdf/0.1.0/

--- lcore/asdf
wcs: !wes/wcs
steps:

- lwcs/step

name: detector
reference_position:

axes:

- lwcs/axis {type: detector, name: x, unit:
- lwcs/axis {type: detector, name: y, unit:
Itransform/concatenate

transform:
forward:

lwcs/steps

[2048.0, 1024.0]

lunit/unit pixel}
lunit/unit pixel}

- !transform/polynomial
coefficients:
- [0.0, 0.0, 0.0, 0.0, 0.0]

name:

[0.00077856419375, 0.1354312449693, 0.0, 0.0, 0.0]
[3.05198604166e-08, 3.3055309813e-06, -2.72696585312¢-08, 0.0, 0.0]
[4.87638965665e-12, 3.86011101555e-12, 0.0, 0.0, 0.0]
[-2.680914674014611e-14, 0.0, 0.0, 0.0, 0.0]
x_distortion_correction

- !transform/polynomial
coefficients:
- [0.0, 0.0, 0.0, 0.0, 0.0]

[0.1209636405110, -0.0004185167199466, 0.0, 0.0, 0.0]
[3.620061079e-06, -3.0909053094e-08, 8.413534828e-07, 0.0, 0.0]
[-2.88214486e-11, 7.6239735e-12, 0.0, 0.0, 0.0]
[8.756611700935085e-14, 0.0, 0.0, 0.0, 0.0]

name: y_distortion_correction

- lwcs/step
name: focal_plane

reference_position:

[2048.0, 1024.0]

axes:

- lwcs/axis {type: focal_plane, name: x, unit:
- lwcs/axis {type: focal_plane, name: y, unit:

transform: !transform/compose

forward:

- Itransform/concatenate
forward:
- Itransform/shift {offset: 2048.0}
- !transform/shift {offset: 1024.0}

- ltransform/affine
matrix: !core/ndarray
data:

- [1.29058668e-05, 5.95320246e-06, 0.0]
- [5.02215196e-06, -1.26450104e-05, 0.0]
- [0.0, 0.0, 0.0]
datatype: float64
shape: [3, 3]

- !transform/tangent {direction: forward}

- !transform/rotate3d {

lunit/unit pixel}
lunit/unit pixell}

direction: native2celestial, phi: 5.6305681099999996,
psi: 180.0, theta: -72.054571839999994}

- lwcs/step
name: celestial
axes:

- lwcs/axis {type: celestial, name: RA, unit:

'lunit/unit deg}

- lwcs/axis {type: celestial, name: DEC, unit: !unit/unit deg}

Fig. 6. An example WCS transformation in ASDF. It has three reference frames, “detector”, “focal plane” and “celestial”, each with a transformation to the next reference

frame.

(sequences, mappings, numbers and strings) but may also refer to
the binary objects (e.g., arrays or tables) in one of the following
blocks in the file, or blocks in external resources. Fig. 4 shows an
example file where the data for an array is stored in a binary block.

More information about the YAML content of the Tree is discussed
in Section 6.

Tools are provided to “explode” the file into constituent parts
(the Tree and the blocks each in their own files) so that the Tree
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#ASDF 0.1.0
%YAML 1.1
%TAG ! tag:stsci.edu:asdf/0.1.0/
-—- lcore/asdf
data:
$ref: #/chips/0/science
telescope: HST
instrument: ACS
proposal:
id: 12699
pi: Jane W. Astronomer
target:
location:
ra: 76.3775954471
dec: 52.83079419491
distance: .Inf
chips:
- chip_id: 1
wes: lwes/wes
steps: !wcs/steps
- l!wcs/step
name: detector

rest of definition removed for brevity ...

science:
data: !core/mndarray
source: 2

datatype: int32
shape: [512, 512]
data_quality:
data: !core/ndarray
source: 1
datatype: intl16
shape: [612, 512]
error:
data: !core/mndarray
source: 0
datatype: float32
shape: [612, 512]

- chip_id: 2
wcs: !wcs/wecs # ... contents removed ...
science:
data: !core/ndarray
source: 3

datatype: float32

shape: [512, 512]
data_quality: # ... contents removed ...
error: # ... contents removed for brevity

...Binary block containing the array data...

Fig.7. A more complex example, where the instrument has two chips, each with a
science, data quality and error array. This is a greatly simplified view of the data file
for the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST),
yet retaining salient organizational items to illustrate the usefulness of hierarchical
grouping.

may be inspected with a text editor, and the blocks read in as binary
data by appropriate tools.

The Tree element is primarily expected to show a generally
hierarchical structure (hence the name), however, because refer-
ences are permitted, it is not strictly a tree. For example different
branches of the Tree may have subbranches in common. Even cir-
cular references are possible.

In the Tree, it is possible to construct arbitrary nesting
of mappings and sequences, containing arbitrary keywords
(i.e., mapping keys) with simple numerical scalar values or strings.

In addition, the value associated with any key can be another
mapping, sequence, or special tagged ASDF object. These special
objects are described in Section 6.

Both the Tree segment and binary blocks provide provisions for
allocating extra unused space in the event future updates to the
file may expand either. This prevents rewriting a whole file during
modifications so long as the size of the Tree or binary blocks do not
expand beyond the allocated space.

Unlike FITS, which interleaves flat metadata (key-value pairs)
with data, the data and metadata in an ASDF file are logically
intertwined. This allows complex relationships between data to be
more easily expressed. For example, a data quality array may be
associated with a particular science array merely by virtue of them
being within the same grouping in the Tree. Physically in the file,
however, the binary data is located after the Tree so that (a) the
Tree may be expanded and contracted without requiring updates
elsewhere in the file and (b) the starting addresses of each of the
blocks may be found efficiently without needing to read through
dynamically-sized text sections.

6. ASDF object type details

The special types defined by ASDF currently include:

e Complex numbers. (Infinity and “not-a-number” are built-in to
YAML, but complex numbers are not.)

e n-dimensional arrays, where data is stored in binary or text,
and may also represent tables as 1-dimensional arrays of fixed
width structures (see Fig. 8).

e A FITS representation which contains sufficient information to
reconstruct a FITS file that this element was created from.

o Units to specify standard physical units.

e Transform object that defines a rich set of possible coordinate
transforms.

e A world coordinate system (WCS) object that combines
transform objects to define world coordinate systems for array
data. The WCS issue is very important, and was the primary
driver for going with a new format so it will be described in
detail.

While a fairly limited set of objects, this already provides
capabilities well beyond what is currently possible with FITS
files. Note that nothing restricts the use of additional objects in
the future, either by a standard, or a local convention, or even
for individual use. Such additional objects may make use of the
schema machinery if the appropriate schema is defined, but that
is not required if the object is not to be part of the ASDF standard
or a local convention.

Object types are arranged in “modules”. Only the “core” module
is required to be implemented for basic ASDF support, while other
modules can be considered optional. The dependencies between
modules is explicit in the standard: for example, to support the
“WCS” module, the “unit” and “transform” module must also be
implemented. We anticipate that other modules will be written
by third-parties for local use, and other modules may be added
to the core ASDF standard in the future. For example, a “table”
module is planned, which would represent tables abstractly as
a collection of columns, each with their own datatypes and
metadata, independently of how the table is represented on disk
(as text, row-ordered or column-ordered binary data, or an SQL
database being possible examples).

The following only summarizes the general aspects of these
object types. The draft specification and schemas provide full
details.* The text here corresponds to version 0.1.0 of the draft
specification.

4 http://github.com/spacetelescope/asdf-standard.
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#ASDF 0.1.0
% YAML 1.1
% TAG ! tag:stsci.edu:asdf/0.1.0/
—--- lcore/asdf
table: !core/ndarray
datatype:
- {datatype: ascii4, name: name}
- {datatype: float32, name: ra}
- {datatype: float32, name: dec}
- {datatype: float64, name: err_maj}
- {datatype: float64, name: err_min}
- {datatype: float64, name: angle}
data:
- [M101, 10.683262825012207, 41.2674560546875, 0.13, 0.12, 213.916]
- [M102, 10.682777404785156, 41.270111083984375, 0.1, 0.09, 306.825]
- [M103, 10.684737205505371, 41.26903533935547, 0.08, 0.07, 96.656]
- [N203, 10.682382583618164, 41.26792526245117, 0.1, 0.09, 237.145]
- [N204, 10.686025619506836, 41.26922607421875, 0.13, 0.12, 79.581]
- [L112, 10.685656547546387, 41.26955032348633, 0.13, 0.12, 55.219]
- [K090, 10.684028625488281, 41.27090072631836, 0.13, 0.12, 345.269]
- [M104, 10.687610626220703, 41.270301818847656, 0.18, 0.14, 60.192]
shape: [8]

Fig. 8. Structured table example.

6.1. Complex number scalars

Complex number scalar values are supported.

6.2. N-dimensional arrays

N-dimensional arrays provide support for arrays of the standard
C data types. Specifically, signed and unsigned integers (8, 16,
32, and 64 bit), as well as single and double precision IEEE-754
floating point real and complex numbers are supported. (Quad
precision support is complicated by variable levels of hardware
support, but is planned.) Support also includes fixed sized strings of
both 7-bit ASCII and UCS4 Unicode. Both big and little byte orders
(endianness) may be stored directly in the file.

Arrays can be defined with arbitrary “strides” for each
dimension. This specification permits views of arrays that show
only a subarray, views of arrays that skip an arbitrary number
of elements (e.g., an array view that only sees every other array
value), and views that arbitrarily reorder indexing dimensions
without changing the storage order of the array elements. (This
effectively supports what are called hyperslabs in HDF5.)

This same machinery supports building multidimensional
arrays of structs (or, equivalently, records), i.e., fixed field size
tables mixing types of fields including character fields. Binary
tables are defined on top of such arrays of structs by associating
fields with column names.

Note that the concept of variable-width columns in FITS is not
supported in ASDF. That the convention is overly complicated is
evidenced by its incomplete support in many FITS tools. Instead,
we recommend placing highly dynamically shaped and nested
structures in the Tree part of an ASDF file.

Fig. 4 shows an example of n-dimensional array.

6.3. FITS objects

These structures retain the ordering, keyword names and
structure of FITS headers (as part of a list of FITS Header Data Units,
or HDUs) so that is possible to exactly reconstruct the original FITS
headers that were converted to ASDF format. The data components
of HDUs are saved using the n-dimensional array objects in ASDF.

The FITS header cards are parsed and stored as keyword, value,
comment tuples. Thus it is possible to access FITS header values
without additional parsing. Fig. 5 provides an example.

6.4. Unit objects

Unit objects provide standard physical unit attributes for
physical quantities. The syntax and set of units are based on the
VOUnit specification (Demleitner et al., 2014).

6.5. Transform objects

This component is the computational core of WCS objects.
These provide a way of specifying a wide range of mathematical
transformations from n input coordinates to m output coordinates.
A standard set of functions is provided, and composite functions
may be constructed using standard arithmetic functions, a
mechanism to connect the output of one transform to another (as
a pipeline) as well as tools to manipulate mappings of coordinates
from one transform to another (e.g., swap the outputs of one
function to use as inputs to the next), and join independent
transforms of different coordinates into a single joint transform
accepting the combination of their input and output coordinates.

This machinery will allow arbitrarily complex transformations
to be constructed without defining one for every possibility
that may be conceived. It also provides a mechanism to define
intermediate results (e.g., coordinates at the focal plane) so that
the resulting library can extract the appropriate subtransform.

A mechanism is also provided that allows mapping arrays to
different transforms to cover instruments that have discontinuous
WCS models (Integral Field Units are a good example).

6.6. WCS objects

WCS objects consist of a sequence of coordinate frames, with
a transform definition from one to the next. This schema covers
many use cases not possible with the FITS WCS standard (see
Greisen and Calabretta, 2002; Calabretta and Greisen, 2002; and
Greisenetal.,2006), particularly with regard to complex composite
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transforms.” In ASDF, there is no limit to the number of WCS
objects that can be defined for a data set and no restrictions on the
names they may be given. The reference capabilities of YAML/JSON
mean that WCS objects can be explicitly shared between different
arrays, for example, the science data, data quality and error
estimate arrays.

Input coordinates to the transforms do not have to correspond
to a pixel index. For example, the transform may have input
coordinates that correspond to a grism or grating order, a time
(if the WCS has a time dependent aspect), or the zero-order
location in a grism image. In this way, a much richer model for the
interpretation of the data can be provided in the data file itself.

Support for much more flexible WCS models than were
available in FITS was the main motivating factor in developing
ASDF. We realized that a format that could support such models
was not difficult to generalize to handle other common forms of
data as well.

Fig. 6is an example of WCS information in ASDF. This is the most
complex example presented, but it helps illustrate the flexibility
of the approach to WCS issues. Most of the actual information is
in the transformation steps being defined. The WCS framework is
built around such transformations that provide the needed context
to understand the meaning of the inputs and output. The net
WCS pipeline may be composed from individual WCS steps, each
of which represents a conversion from one coordinate system to
another. These simply appear as a sequence of WCS steps.

Transform concatenations allow functions with independent
outputs to be combined as a set of outputs, as in the first case where
a two dimensional polynomial model produces a single value; two
such models are concatenated to provide new x, y pair of values for
a corresponding pair of input values.

Transform compositions involve stringing transformations in
series as illustrated by passing the independent shifts on the two
input coordinates into an affine transformation, followed by a
tangent projection, and finally rotation on the sky.

This scheme allows any number of intermediate coordinate
systems, manipulations to join or separate coordinate tuples, and
the ability to employ operations between a suite of available
transformation functions.

While not shown in the example, one mechanism allows
mapping different regions of an array to a different WCS definition
for each region. This permits inclusion of WCS definitions that can
handle IFU data files.

7. Organization of the ASDF specification

The ASDF specification consists of three parts:

e Narrative document describing the base format.
e Set of schema describing standard types (or “tags”).
e Set of reference ASDF files and their logical interpretation.

The specification and schemas should be considered evolving
as experience in using them and feedback from those in the
community interested in using the format is obtained. At an
appropriate time version 1.0 will be designated.

The schemas are written using the JSON Schema language
(Zyp and Court, in preparation-ab,c), with a couple of small
extensions to support YAML-specific features (YAML Schema,

5 Another, much more flexible and more capable WCS library has been developed
but has not see wide use, AST, (Berry and Jenness, 2012).

which is part of the ASDF standard). A more readable guide to
JSON Schema (as opposed to standards documents) is available
(Droettboom, 2015). This language allows for basic validation of
data types and structure. The types included in ASDF are described
in Section 6. All of these types have an independent version
number, so their specifics may be changed in a future revision of
the ASDF standard without breaking backward compatibility. The
description of these types is written in JSON Schema itself, and all
examples are automatically tested against the schema, so there is
no risk of the text becoming outdated against the schema.

The reference ASDF files can be used as a test suite to test an
ASDF library for compliance against the standard.

The schema mechanism permits users and projects to define
their own objects and provide schemas for them that can be made
publicly visible so that outside users of these files can use the
schemas as well.

It is typical that a schema definition will correspond to
a corresponding software implementation of that object in a
software library supporting ASDF, but nothing requires it. The
schema may serve as a mechanism for documenting the object
and a way of validating that a file conforms to the schema if it is
declared to use that object without any explicit software support.
Library support for YAML typically provides software access for
all items in the YAML itself without any requirement that the
object be represented as a specialized object (in languages that
support objects). Of course, any aspect of binary data that does not
have library support (e.g., specialized compression) needs special
code to properly interpret that binary data if it is not part of the
standard.

8. Reference implementation

We are of the belief that a new format is not worth discussing
without a reference implementation. We have implemented a
library to read and write this format for the Python language to
test its practicality. This implementation is hosted on Github® and
is publicly available under a BSD-style open source license. The
implementation makes use of a number of existing open source
libraries, including:

e PyYAML to parse and write YAML (Simonov, 2006).

e python-jsonschema to validate ASDF against JSON Schema
definitions (Berman, 2012).

o Numpy to support n-dimensional arrays (Oliphant, 2007).

e astropy to support physical units and implement the transfor-
mation models used for WCS (Astropy Collaboration, 2013).

Beyond just the basic functionality, the reference implementa-
tion supports a number of advanced usage scenarios in order to
pressure-test the design of the ASDF format. This includes in-place
updating with minimal rewrites, partial streaming over HTTP,
copy-on-write memory mapped semantics and compression.

Utilities for converting FITS files into ASDF, for exploding ASDF
files into simpler constituent parts, and other common operations
have been developed using this library.

The next implementation planned is one in C, which, through
wrapping, could be the basis of support for many higher-level
languages. We are also considering writing a read-only JavaScript
library so that web-based applications could access and display
ASDF files.

6 http://github.com/spacetelescope/pyasdf.
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9. Performance considerations

Since performance is important to many that wish to use a
particular data format, it is useful to discuss the issues that affect
performance.

The biggest intrinsic limitation is the need to parse the complete
YAML section (“Tree”). In most cases the Tree does not require
significant overhead to parse. However, it is possible to store
arbitrary amounts of array and table-like data directly in the Tree
as plain text. For small data this is not an issue, but should large
quantities of data (e.g. full resolution images) be stored in the YAML
section then performance penalties will be seen. We expect that
in the vast majority of cases where there is substantial data, that
data will be in the binary section of the file since there is a very
large performance advantage to having it there. We would also
encourage ASDF software to make it easy to specify the storage
method for data as needed for the application. While there may be
unusual circumstances where only YAML is capable of representing
the structures present in the data, this is likely to be rare in practice.

Performance with binary data is a separate issue. The basic
implementation we present here does not have all the mechanisms
of handling very large or distributed data sets efficiently such as are
present in HDF5. Current examples of such HDF5 features include
support for:

e Data chunking.
e Distributed Data.
e Parallel I/0.

In this list there is not a clear distinction between what is
intrinsic to the format itself or the library that supports it. In the
case of HDF5, this distinction is often blurry since for all practical
purposes, the software library and format are practically treated
as one and the same. For example, parallel I/O is primarily a library
capability. Nevertheless, nothing precludes adding such support in
the future, and nothing suggests that the ASDF implementation
of such features would be any slower due to intrinsic technical
reasons. There are no immediate plans to add such features;
however, if ASDF sees wide use and there is demand for such
capabilities then that will be reconsidered.

10. Adding and extending data types

ASDF allows for easy extension of the set of supported objects
at the YAML level. These extensions may be added by anyone, and
they can add their own definitions of such extensions in the form
of JSON Schema. This allows them to make extensions that can
be validated using the standard J[SON Schema validators (included
in generic ASDF libraries), and they may publish their schemas
without requiring an update to the standards, nor interfering with
extensions developed by others by using the namespaces and the
tag mechanism.

Examples of such type extensions may include definitions of
instrument configurations, or specific observational contexts for
their observing programs (e.g., information about where a specific
observation fits in the larger observing plan). It may also be used
to group necessary calibration information or data sets needed to
reduce the data for that particular instrument.

Extensions to the lower level binary data structures are
possible, but more problematic since any such changes require
extensions to the support libraries to be able to access the data in
such extensions (contrast this with changes to YAML structures,
which without library extensions, may still be accessed by basic
YAML libraries for all the basic information).

For either case, a plug-in model for support libraries would
facilitate more convenient access for YAML extensions, and
necessary access for binary extensions, but that aspect more
properly relates to software library implementation details than
it does for the design of the data format.

As a word of caution, many YAML libraries, including PyYAML,
include a mechanism for serializing and deserializing arbitrary
objects in their implementation language. Such capabilities are
not part of the ASDF format and should not be used with ASDF,
as it inhibits portability and could have security risks. Such
YAML libraries include a “safe” loader that only instantiates
objects explicitly requested by users of the library—in this case
ASDF objects defined through the ASDF library. Therefore the
specification requires ASDF implementations to only use “safe”
loaders for YAML deserialization.

11. Suitability for archiving

The file format described here meets all the qualities that we
required for archive suitability. Some caveats are warranted how-
ever. Meeting the goal of being self documenting and transparent
requires that more obscure binary structures should be generally
avoided unless well described in the YAML section. In particular,
any domain-specific or lossy compression technique seriously risks
violating this quality, and should generally be avoided in any long-
term archive, as attractive as it is for conserving space. This is true
for any format, unless the compression algorithm is closely bound
to the data in a way that is unambiguous and has several test cases.

Any custom YAML-only extensions should not prove a problem
for archive suitability, so long as those designing make the contents
reasonably interoperable with good attribute names and values.
No flexible storage format can prevent creators of files from using
confusing names or values. This format does enable them to
use clearer names and values, as well as making structure more
transparent.

There is nothing in the format that is programming language-
specific, and the array structures have been designed to be as
generic as possible (despite their similarity to Numpy arrays in
terminology, they are simply n-dimensional, regularly spaced data
values in memory).

12. Example files

12.1. An example data model

Fig. 7 ties together a number of the features described above
and shows a complex example with multiple chips and multiple
arrays, all sharing a common WCS.

The example here can be represented in FITS, of course. But a
number of conventions have to be defined in order to define the
groupings of the data. For the Hubble Space Telescope (HST), this
was done by using EXTVER to identify which chip each set of SCT,
DQ, and ERR belonged to. But suppose we now wanted to group
a dithered set of Advanced Camera for Surveys (ACS) exposures
in one file. For FITS, one must come up with a more convoluted
extension naming scheme with a documented convention. This
example required no convention to imply the correct relationship
between the various elements.

A good illustration of the usefulness of the explicit grouping is
in the specification of the applicable WCS. There are two chips in
this example, each with its own WCS definition. The WCS model
is common to all the data arrays associated with the specific chip.
The grouping used in the example makes it explicit to which arrays
the WCS applies. No special linking keywords or other conventions
are needed.

http://dx.doi.org/10.1016/j.ascom.2015.06.004
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Note that this example should not be presumed to represent
a standard data model. It is just an illustration of how we could
organize data in a very useful way, e.g., by grouping proposal
information under one attribute, instrument configuration under
another, and target information under yet another. Some elements
of this example probably should end up as part of a standard data
model, such as the associated science, data quality and error arrays.

In FITS, combining data from two sources with different ex-
tension naming conventions would provide particularly annoying
problems. This illustrates how a lack of a simple grouping structure
presents difficult-to-solve issues when combining more complex
sets of data.

Notice also that ASDF includes a convention to refer to an
optional “main” data array using the “data” key at the top-level,
that is somewhat analogous to a PRIMARY array in FITS. This would
be, for example, the array that would be displayed in an image
viewer that is otherwise unaware of a particular data model. Fig. 7
uses the JSON Pointer convention to refer to the main data array by
reference, for example:

$ref: #/chips/0/science

12.2. Support for text format data

One goal of ASDF was to enable use of simple, editable data
files, particularly for tabular data. Use of text tables is quite popular
in astronomy. Unfortunately there are many flavors of text files
currently being used, each with its own syntax, and while these
files are editable, they do present a number of headaches for
software that has to deal with the many flavors of text tables now
in use. Standardization of text tables would have obvious benefits.
ASDF does make it possible to represent tables (and arrays for that
matter) as editable text. Fig. 8 is an example of such a table.

It must be noted that whatever text layout one creates
manually, or otherwise outside of YAML libraries, is not necessarily
going to be retained if the file is read and written out by such
libraries. One may see one style of blocking converted into another,
or text items positioned differently. Nothing semantically will
change, but visually it may. The YAML libraries generally do
provide ways of controlling the form of the output, but we caution
that it is likely a waste of effort to control this in fine detail. A likely
better solution is to provide utilities to reformat such text in the
manner desired rather than put the onus on the library of divining
the desires of the user.

The text format aspects enable easy creation of ASDF files
(even outside of standard ASDF libraries, so long as validation
tools are used to confirm the legality of the syntax). They also
permit relatively easy editing of such files whether created by ASDF
libraries or not. Editing, of course, may introduce illegal syntax
inadvertently, so conditioning users to routinely check this against
standard tools will be important.

13. Data models

What is not addressed in this paper is any outline of what
data models should be defined within the standard. This is a
large task in itself; for example a significant component of the
Virtual Observatory work has concerned defining Data Models (for
example, see Louys et al., 2008). The ASDF format does provide
a good basis for defining data models. The ACS example in Fig. 7
would benefit from a standard data model that standardized
the use of the various component elements as to their names,
organization, and meaning. For example, an observation may
be bundled with error and data quality data, and it might be
expected that the attributes for the 3 components might be

“science”, “error”, and “data_quality” respectively. The

schema mechanism allows for validation of new data models,
both those that are adopted as standards, and those adopted as
conventions for specific communities or projects.

Likewise, there are standard kinds of data that could benefit
from a standard representation within the format such as images,
1-D, 2-D and 3-D spectral data. The trick is in choosing the correct
balance between trying to be so general as to encompass all cases
(and in the end being useful for none), and being too simple for
most data.

14. Conclusion

The proposed format, for which we have a basic implementa-
tion, is capable of handling all the cases that the FITS format han-
dles’ and is able to address many more issues much more simply
than can be handled with FITS. The improvements allow for far
more descriptive keyword names, much greater flexibility as to the
data values (well beyond simple scalar or string values), an intrin-
sically hierarchical structure, and the ability to share references to
the same objects between different elements. The organizational
elements are all managed by a standard text format for which many
good libraries exist for commonly used languages.

Binary data is an intrinsically supported aspect of the format,
and allows any number of binary data objects to be associated
in a file. Support for streaming data (both reading and writing)
is supported. The specification document, the related object
schemas, and a Python implementation are available on GitHub
and all have an Open Source license.

The format allows for the future addition of new binary
elements. Unlike custom YAML elements, custom binary elements
generally require custom software to access the elements of the
binary object. ASDF allows such non-standard elements, but each
such element should have a standard attribute (details still to be
specified) whose value provides a unique link to a specification of
the element. The link itself is used to identify what kind of plug-in
is needed to interpret the binary object.

The James Webb Space Telescope will be using this format for
its calibration pipelines and data analysis tools.®

Finally, nothing in this low level format design is specific
to astronomy or astrophysics (the existing set of units and
transforms is geared to astronomical use though nothing prevents
generalization to other fields). Future data models and conventions
may, of course, be specific to astronomy.

Such a format potentially has wide applicability to many
scientific and engineering fields.
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